Nanonewton force-controlled manipulation of biological cells
نویسندگان
چکیده
As mechanical end-effectors, microgrippers enable the pick–transport–place of micrometer-sized objects, such as manipulation and positioning of biological cells in an aqueous environment. This paper reports on a monolithic MEMS-based microgripper with integrated force feedback along two axes and presents the first demonstration of forcecontrolled micro-grasping at the nanonewton force level. The system manipulates highly deformable biomaterials (porcine interstitial cells) in an aqueous environment using a microgripper that integrates a V-beam electrothermal microactuator and two capacitive force sensors, one for contact detection (force resolution: 38.5 nN) and the other for gripping force measurements (force resolution: 19.9 nN). The MEMS-based microgripper and the force control system experimentally demonstrate the capability of rapid contact detection and reliable force-controlled micrograsping to accommodate variations in size and mechanical properties of objects with a high reproducibility. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
NanoNewton Force Sensing and Control in Microrobotic Cell Manipulation
Cellular force sensing and control techniques are capable of enhancing the dexterity and reliability of microrobotic cell manipulation systems. This paper presents a vision-based cellular force sensing technique using a microfabricated elastic cell holding device and a sub-pixel visual tracking algorithm for resolving forces down to 3.7nN during microrobotic mouse embryo injection. The techniqu...
متن کاملEffective Parameters in Contact Mechanic for Micro/nano Particle Manipulation Based on Atomic Force Microscopy
The effect of geometry and material of the Micro/Nano particle on contact mechanic for manipulation was studied in this work based on atomic force microscopy. Hertz contact model simulation for EpH biological micro particle with spherical, cylindrical, and circular crowned roller shape was used to investigate the effect of geometry on contact simulation process in manipulation. Then, to val...
متن کاملSensitivity Analysis of the Critical Conditions of AFM-Based Biomanipulation of Cylindrical Biological Particles in Various Biological Mediums by Means of the Sobol Method
The sensitivity analysis of atomic force microscope (AFM) based manipulation of gold spherical nanoparticles in air medium has been carried out in previous research works. In the AFM-based manipulations conducted in various biological liquid mediums, the new environmental parameters associated with these biological fluids also affect the dynamics of the manipulation process. Therefore in this r...
متن کاملFinite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملVision-based force sensing at nanonewton scales
When assembling MEMS devices or manipulating biological cells it is often beneficial to have information about the force that is being applied to these objects. This force information is difficult to measure at these scales and up to now has been implemented using laser-based optical force measurement techniques or piezoresistive devices. In this paper we demonstrate a method to reliably measur...
متن کامل